features may be provided to guide the actuator plate 66, such as rails and cooperating grooves. A component 40—which may comprise liquid reagent module 10 described above—having one or more deformable fluid vessels, such as blisters 36 and 38, is positioned within the actuator mechanism 50 beneath the articulated blister actuator platen assembly 52.

[0190] Further details of the configuration of the articulated blister actuator platen assembly 52 and the operation thereof are shown in FIGS. 3A-6B.

[0191] As shown in FIGS. 3A and 3B, the actuator platen assembly 52 includes a chassis 54. A cam body 56 is disposed within a slot 57 of the chassis 54 and is attached to the chassis 54 by a first pivot 58. A platen 64 is pivotally attached to the cam body 56 by means of a second pivot 60. The cam body 56 is held in a horizontal, unactuated position within the slot 57 by means of a torsional spring 55 coupled around the first pivot 58.

[0192] Cam body 56 further includes a cam surface 65 along one edge thereof (top edge in the figure) which, in the exemplary embodiment shown in FIG. 3B, comprises an initial flat portion 61, a convexly-curved portion 62, and a second flat portion 63. The sliding actuator plate 66 includes a cam follow 68 (a roller in the illustrated embodiment) rotatably mounted within a slot 72 formed in the actuator plate 66. In an embodiment of the invention, one cam body 56 and associated platen 64 and cam follower 68 are associated with each deformable vessel (e.g. blister 36) of the liquid reagent module 40.

[0193] The actuator platen assembly 52 and the sliding actuator plate 66 are configured to be movable relative to each other. In one embodiment, the actuator platen assembly 52 is fixed, and the actuator plate 66 is configured to move laterally relative to the platen assembly 52, supported by the V-rollers 74. Lateral movement of the sliding actuator plate 66, e.g., in the direction "A", causes the cam follower 68 to translate along the cam surface 65 of the cam body 56, thereby actuating the cam body 56 and the platen 64 attached thereto.

[0194] In FIGS. 3A and 3B, before the sliding actuator plate 66 has begun to move relative to the actuator platen assembly 52, the cam follower 68 is disposed on the initial flat portion 61 of the cam surface 65 of the cam body 56. In FIGS. 4A and 4B, the sliding actuator plate 66 has moved relative to the actuator platen assembly 52 in the direction "A" so that the cam follower 68 has moved across the initial flat portion 61 of the cam surface 65 and has just begun to engage the upwardly curved contour of the convexly-curved portion 62 of the cam surface 65 of the cam body 56.

[0195] In FIGS. 5A and 5B, the sliding actuator plate 66 has proceeded in the direction "A" to a point such that the cam follower 68 is at the topmost point of the convexly-curved portion 62 of the cam surface 65, thereby causing the cam body 56 to rotate about the first pivot 58. The platen 64 is lowered by the downwardly pivoting cam body 56 and pivots relative to the cam body 56 about the second pivot 60 and thereby compresses the blister 36.

[0196] In FIGS. 6A and 6B, sliding actuator plate 66 has moved to a position in the direction "A" relative to the actuator platen assembly 52 such that the cam follower 68 has progressed to the second flat portion 63 of the cam surface 65. Accordingly, the cam body 56, urged by the torsion spring 55, pivots about the first pivot 58 back to the unactuated position, thereby retracting the platen 64.

[0197] Thus, the articulated blister actuator platen assembly 52 is constructed and arranged to convert the horizontal

movement actuator plate 66 into vertical movement of the platen 64 to compress a blister, and movement of the platen does not require pneumatic, electromechanical, or other components at larger distances above and/or below the liquid module.

[0198] An alternative embodiment of a blister compression actuator mechanism is indicated by reference number 80 in FIGS. 7A and 7B. Actuator 80 includes a linear actuator 82 that is coupled to a cam rail 84. Cam rail 84 is supported for longitudinal movement by a first support rod 96 extending transversely through slot 86 and a second support rod 98 extending transversely through a second slot 88 formed in the cam rail 84. The first support rod 96 and/or the second support rod 98 may include an annular groove within which portions of the cam rail 84 surrounding slot 86 or slot 88 may be supported, or cylindrical spacers may be placed over the first support rod 96 and/or the second support rod 98 on opposite sides of the cam rail 84 to prevent the cam rail 84 from twisting or sliding axially along the first support rail 96 and/or the second support rail 98.

[0199] Cam rail 84 includes one or more cam profile slots. In the illustrated embodiment, cam rail 84 includes three cam profile slots 90, 92, and 94. Referring to cam profile slot 90, in the illustrated embodiment, slot 90 includes, progressing from left to right in the figure, an initial horizontal portion, a downwardly sloped portion, and a second horizontal portion. The shapes of the cam profile slots are exemplary, and other shapes may be effectively implemented. The actuator mechanism 80 also includes a platen associated with each cam profile slot. In the illustrated embodiment, actuator 80 includes three platens 100, 102, 104 associated with cam profile slots 90, 92, 94, respectively. First platen 100 is coupled to the cam profile slot 90 by a cam follower pin 106 extending transversely from the platen 100 into the cam profile slot 90. Similarly, second platen 102 is coupled to the second cam profile slot 92 by a cam follower pin 108, and the third platen 104 is coupled to the third cam profile slot 94 by a cam follower pin 110. Platens 100, 102, 104 are supported and guided by a guide 112, which may comprise a panel having openings formed therein conforming to the shape of each of the platens.

[0200] In FIG. 7A, cam rail 84 is in its furthest leftmost position, and the platens 100, 102, 104 are in their unactuated positions. Each of the cam follower pins 106, 108, 110 is in the initial upper horizontal portion of the respective cam profile slot 90, 92, 94. As the cam rail 84 is moved longitudinally to the right, in the direction "A" shown in FIG. 7B, by the linear actuator 82, each cam follower pin 106, 108, 110 moves within its respective cam profile slot 90, 92, 94 until the cam follower pin is in the lower, second horizontal portion of the respective cam profile slot. Movement of each of the pins 106, 108, 110 downwardly within its respective cam profile slot 90, 92, 94 causes a corresponding downward movement of the associated platen 100, 102, 104. This movement of the platens thereby compresses a fluid vessel (or blister) located under each platen. Each platen may compress a vessel directly in contact with the platen or it may contact the vessel through one or more intermediate components located between the vessel and the corresponding platen.

[0201] Thus, the blister compression actuator mechanism 80 is constructed and arranged to convert the horizontal movement cam rail 84, driven by the linear actuator 82, into vertical movement of the platens 100, 102, 104 to compress blisters, and movement of the platens does not require pneu-